Skip to main content

The future of business is a four-letter word.

Data is exploding: the IDC says data is growing at 40% annually. By 2025, there will be 175 zettabytes—that’s 175 sextillion bytes—of data floating around the world.

To harness that data and use it to create a competitive advantage can be quite daunting. One way forward-thinking organizations have responded to the challenge is by focusing on streaming data.

Think of streaming data like a never-ending poll that consumers respond to on every device, platform, and time of day. It paints a picture of how your audience interacts with your company at any point in time—whether they’re logging into your website, opening your app, making purchases on your ecommerce site, or even commenting on social media.

But to fully utilize streaming data, it’s critical to shore up your current data strategy. That means mastering and cleansing your data architecture and implementing a cohesive data culture across all departments.

Let’s take a minute to take a look at how the leading companies of 2030 are already taking steps to prepare their organizations to capitalize on this wealth of information.

Streaming Data

Streaming data’s growing emphasis is the result of a new way to think about data. As Wayne Borcher, Chief Operating Officer at tdglobal, remarks, “data that was generated even an hour ago is already old news.” Consider the stock market—brokers don’t wait for the market to close, run regression analysis over a period of days, then make a buying decision. They react in real time to fluctuations in the market and economic news so that they can capitalize on each and every opportunity.

Streaming data empowers stockbrokers to rebalance their portfolios in real time as the market changes. Real estate firms use streaming data to recommend properties to app users based on their current location. Logistics companies can put sensors in transportation vehicles that detect when a breakdown is imminent; then they place an order for a spare part so that it arrives at the vehicle’s next location and can replace the faulty part without ever stopping the trucker’s journey. Meanwhile, media publishers are able to measure interactions with their online properties and modify content placement based on users’ demographics, geography, and the time of day they visit the site.

So how can you leverage streaming data in the next decade?

The first step is to set up cloud-based data warehouses. These can separate compute tasks from storage, reducing data processing time from days to minutes. Then, incorporate artificial intelligence (AI) and machine learning powered algorithms that can make decisions based on the data your warehouses are processing. These algorithms have the added effect of mitigating human error from your data analytics strategy.

Master Data

To prepare your organization to fully utilize streaming data, it’s important to ensure the data you’re currently using is cleaned, secured, and mastered. Inaccurate or duplicated data leads to poor decisions and confusion between departments. Imagine if the marketing department doesn’t know that sales just closed a lead and sends that customer an onslaught of redundant messaging! Mastering data creates trusted data, and trusted data is critical when you move to the world of streaming analytics.

Sam Underwood at Futurety said it best: “we see 2019 and 2020 as being the years when organizations that have taken the time to clean and update their underlying data architecture will begin to really leverage AI and machine learning, leaving many of their competitors behind and having to play catch up to match their newfound advantage.”

Data Culture

The other step you need to take to prepare for the streaming data revolution is cultivating a thorough data culture. Already, “citizen data scientists” have become the norm, as new self-service data analytics solutions are becoming amateur-friendly. These new data preparation technologies can show correlations, exceptions, clusters, links, and predictions in data without end users having to build models or write algorithms. The result? Everyone in your organization can now be a data scientist—from your college intern to your CFO. In fact, more than 40% of data science tasks will be automated in 2020, resulting in increased productivity and broader usage by citizen data scientists (Gartner).

Organizations should also clearly define how their departments collect, process, and interpret data so that everyone is using the same language and visualization protocols. It’s all about creating a single version of the truth across your entire enterprise.

Thinking Ahead

By 2025, nearly 30% of all data created will be real-time, compared to 15% in 2017 (IDC). Turn this into a competitive advantage by shoring up your data culture, mastering your data infrastructure, and ultimately leveraging streaming data as a central tenant of your analytics strategy.

Sricharan Vadapalli

About the author

Sricharan Vadapalli

Practice Director, Data, Analytics and DevOps

Vandapalli, or “Sri,” as friends call him, helps clients harness the power of data with the latest and greatest analytic technologies. With a background in IT consulting and career guidance, Sri knows how to bring clients from where they are, to where they need to be. Always developing new skills and knowledge sets, Sri hopes to leave a legacy by teaching others to achieve their goals. An author of literature on Big Data and DevOps, and a yoga and meditation instructor, Sri finds joy in public speaking and mentoring peers in his community.

Cookie Notice

This site uses cookies to provide you with a more responsive and personalized service. By using this site you agree to our privacy policy & the use of cookies. Please read our privacy policy for more information on the cookies we use and how to delete or block them. More info

Back to top